3.620 \(\int \frac{(1-a^2 x^2)^{3/2}}{(1-a x)^2 (c+d x)} \, dx\)

Optimal. Leaf size=107 \[ \frac{(a c-d)^2 \tan ^{-1}\left (\frac{a^2 c x+d}{\sqrt{1-a^2 x^2} \sqrt{a^2 c^2-d^2}}\right )}{d^2 \sqrt{a^2 c^2-d^2}}-\frac{\sqrt{1-a^2 x^2}}{d}-\frac{(a c-2 d) \sin ^{-1}(a x)}{d^2} \]

[Out]

-(Sqrt[1 - a^2*x^2]/d) - ((a*c - 2*d)*ArcSin[a*x])/d^2 + ((a*c - d)^2*ArcTan[(d + a^2*c*x)/(Sqrt[a^2*c^2 - d^2
]*Sqrt[1 - a^2*x^2])])/(d^2*Sqrt[a^2*c^2 - d^2])

________________________________________________________________________________________

Rubi [A]  time = 0.240769, antiderivative size = 107, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {853, 1654, 844, 216, 725, 204} \[ \frac{(a c-d)^2 \tan ^{-1}\left (\frac{a^2 c x+d}{\sqrt{1-a^2 x^2} \sqrt{a^2 c^2-d^2}}\right )}{d^2 \sqrt{a^2 c^2-d^2}}-\frac{\sqrt{1-a^2 x^2}}{d}-\frac{(a c-2 d) \sin ^{-1}(a x)}{d^2} \]

Antiderivative was successfully verified.

[In]

Int[(1 - a^2*x^2)^(3/2)/((1 - a*x)^2*(c + d*x)),x]

[Out]

-(Sqrt[1 - a^2*x^2]/d) - ((a*c - 2*d)*ArcSin[a*x])/d^2 + ((a*c - d)^2*ArcTan[(d + a^2*c*x)/(Sqrt[a^2*c^2 - d^2
]*Sqrt[1 - a^2*x^2])])/(d^2*Sqrt[a^2*c^2 - d^2])

Rule 853

Int[((d_) + (e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a^
m, Int[((f + g*x)^n*(a + c*x^2)^(m + p))/(d - e*x)^m, x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
- d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[m, 0] && IntegerQ[n]

Rule 1654

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff
[Pq, x, Expon[Pq, x]]}, Simp[(f*(d + e*x)^(m + q - 1)*(a + c*x^2)^(p + 1))/(c*e^(q - 1)*(m + q + 2*p + 1)), x]
 + Dist[1/(c*e^q*(m + q + 2*p + 1)), Int[(d + e*x)^m*(a + c*x^2)^p*ExpandToSum[c*e^q*(m + q + 2*p + 1)*Pq - c*
f*(m + q + 2*p + 1)*(d + e*x)^q - f*(d + e*x)^(q - 2)*(a*e^2*(m + q - 1) - c*d^2*(m + q + 2*p + 1) - 2*c*d*e*(
m + q + p)*x), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, c, d, e, m, p}, x] && PolyQ[Pq
, x] && NeQ[c*d^2 + a*e^2, 0] &&  !(EqQ[d, 0] && True) &&  !(IGtQ[m, 0] && RationalQ[a, c, d, e] && (IntegerQ[
p] || ILtQ[p + 1/2, 0]))

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\left (1-a^2 x^2\right )^{3/2}}{(1-a x)^2 (c+d x)} \, dx &=\int \frac{(1+a x)^2}{(c+d x) \sqrt{1-a^2 x^2}} \, dx\\ &=-\frac{\sqrt{1-a^2 x^2}}{d}-\frac{\int \frac{-a^2 d^2+a^3 (a c-2 d) d x}{(c+d x) \sqrt{1-a^2 x^2}} \, dx}{a^2 d^2}\\ &=-\frac{\sqrt{1-a^2 x^2}}{d}-\frac{(a (a c-2 d)) \int \frac{1}{\sqrt{1-a^2 x^2}} \, dx}{d^2}+\frac{(a c-d)^2 \int \frac{1}{(c+d x) \sqrt{1-a^2 x^2}} \, dx}{d^2}\\ &=-\frac{\sqrt{1-a^2 x^2}}{d}-\frac{(a c-2 d) \sin ^{-1}(a x)}{d^2}-\frac{(a c-d)^2 \operatorname{Subst}\left (\int \frac{1}{-a^2 c^2+d^2-x^2} \, dx,x,\frac{d+a^2 c x}{\sqrt{1-a^2 x^2}}\right )}{d^2}\\ &=-\frac{\sqrt{1-a^2 x^2}}{d}-\frac{(a c-2 d) \sin ^{-1}(a x)}{d^2}+\frac{(a c-d)^2 \tan ^{-1}\left (\frac{d+a^2 c x}{\sqrt{a^2 c^2-d^2} \sqrt{1-a^2 x^2}}\right )}{d^2 \sqrt{a^2 c^2-d^2}}\\ \end{align*}

Mathematica [C]  time = 0.307408, size = 148, normalized size = 1.38 \[ -\frac{\frac{i (d-a c)^2 \log \left (\frac{2 d^3 \left (\sqrt{1-a^2 x^2} \sqrt{a^2 c^2-d^2}+i a^2 c x+i d\right )}{(d-a c)^2 \sqrt{a^2 c^2-d^2} (c+d x)}\right )}{\sqrt{a^2 c^2-d^2}}+d \sqrt{1-a^2 x^2}+(a c-2 d) \sin ^{-1}(a x)}{d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - a^2*x^2)^(3/2)/((1 - a*x)^2*(c + d*x)),x]

[Out]

-((d*Sqrt[1 - a^2*x^2] + (a*c - 2*d)*ArcSin[a*x] + (I*(-(a*c) + d)^2*Log[(2*d^3*(I*d + I*a^2*c*x + Sqrt[a^2*c^
2 - d^2]*Sqrt[1 - a^2*x^2]))/((-(a*c) + d)^2*Sqrt[a^2*c^2 - d^2]*(c + d*x))])/Sqrt[a^2*c^2 - d^2])/d^2)

________________________________________________________________________________________

Maple [B]  time = 0.289, size = 1178, normalized size = 11. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a^2*x^2+1)^(3/2)/(-a*x+1)^2/(d*x+c),x)

[Out]

1/3*d/(a*c+d)^2*(-(x+c/d)^2*a^2+2*a^2*c/d*(x+c/d)-(a^2*c^2-d^2)/d^2)^(3/2)+1/2/(a*c+d)^2*a^2*c*(-(x+c/d)^2*a^2
+2*a^2*c/d*(x+c/d)-(a^2*c^2-d^2)/d^2)^(1/2)*x+3/2/(a*c+d)^2*a^2*c/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-(x+c/d)^2
*a^2+2*a^2*c/d*(x+c/d)-(a^2*c^2-d^2)/d^2)^(1/2))-1/d/(a*c+d)^2*(-(x+c/d)^2*a^2+2*a^2*c/d*(x+c/d)-(a^2*c^2-d^2)
/d^2)^(1/2)*a^2*c^2+d/(a*c+d)^2*(-(x+c/d)^2*a^2+2*a^2*c/d*(x+c/d)-(a^2*c^2-d^2)/d^2)^(1/2)-1/d^2/(a*c+d)^2*a^4
*c^3/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-(x+c/d)^2*a^2+2*a^2*c/d*(x+c/d)-(a^2*c^2-d^2)/d^2)^(1/2))-1/d^3/(a*c+d
)^2/(-(a^2*c^2-d^2)/d^2)^(1/2)*ln((-2*(a^2*c^2-d^2)/d^2+2*a^2*c/d*(x+c/d)+2*(-(a^2*c^2-d^2)/d^2)^(1/2)*(-(x+c/
d)^2*a^2+2*a^2*c/d*(x+c/d)-(a^2*c^2-d^2)/d^2)^(1/2))/(x+c/d))*a^4*c^4+2/d/(a*c+d)^2/(-(a^2*c^2-d^2)/d^2)^(1/2)
*ln((-2*(a^2*c^2-d^2)/d^2+2*a^2*c/d*(x+c/d)+2*(-(a^2*c^2-d^2)/d^2)^(1/2)*(-(x+c/d)^2*a^2+2*a^2*c/d*(x+c/d)-(a^
2*c^2-d^2)/d^2)^(1/2))/(x+c/d))*a^2*c^2-d/(a*c+d)^2/(-(a^2*c^2-d^2)/d^2)^(1/2)*ln((-2*(a^2*c^2-d^2)/d^2+2*a^2*
c/d*(x+c/d)+2*(-(a^2*c^2-d^2)/d^2)^(1/2)*(-(x+c/d)^2*a^2+2*a^2*c/d*(x+c/d)-(a^2*c^2-d^2)/d^2)^(1/2))/(x+c/d))-
1/3*d/(a*c+d)^2*(-(x-1/a)^2*a^2-2*a*(x-1/a))^(3/2)+1/2*d/(a*c+d)^2*a*(-(x-1/a)^2*a^2-2*a*(x-1/a))^(1/2)*x+1/2*
d/(a*c+d)^2*a/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-(x-1/a)^2*a^2-2*a*(x-1/a))^(1/2))-1/a^2/(a*c+d)/(x-1/a)^2*(-(
x-1/a)^2*a^2-2*a*(x-1/a))^(5/2)-1/(a*c+d)*(-(x-1/a)^2*a^2-2*a*(x-1/a))^(3/2)+3/2*a/(a*c+d)*(-(x-1/a)^2*a^2-2*a
*(x-1/a))^(1/2)*x+3/2*a/(a*c+d)/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-(x-1/a)^2*a^2-2*a*(x-1/a))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-a^{2} x^{2} + 1\right )}^{\frac{3}{2}}}{{\left (a x - 1\right )}^{2}{\left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^(3/2)/(-a*x+1)^2/(d*x+c),x, algorithm="maxima")

[Out]

integrate((-a^2*x^2 + 1)^(3/2)/((a*x - 1)^2*(d*x + c)), x)

________________________________________________________________________________________

Fricas [A]  time = 3.10313, size = 679, normalized size = 6.35 \begin{align*} \left [-\frac{{\left (a c - d\right )} \sqrt{-\frac{a c - d}{a c + d}} \log \left (\frac{a^{2} c d x + d^{2} -{\left (a^{2} c^{2} - d^{2}\right )} \sqrt{-a^{2} x^{2} + 1} -{\left (a c d + d^{2} +{\left (a^{3} c^{2} + a^{2} c d\right )} x + \sqrt{-a^{2} x^{2} + 1}{\left (a c d + d^{2}\right )}\right )} \sqrt{-\frac{a c - d}{a c + d}}}{d x + c}\right ) - 2 \,{\left (a c - 2 \, d\right )} \arctan \left (\frac{\sqrt{-a^{2} x^{2} + 1} - 1}{a x}\right ) + \sqrt{-a^{2} x^{2} + 1} d}{d^{2}}, \frac{2 \,{\left (a c - d\right )} \sqrt{\frac{a c - d}{a c + d}} \arctan \left (\frac{{\left (d x - \sqrt{-a^{2} x^{2} + 1} c + c\right )} \sqrt{\frac{a c - d}{a c + d}}}{{\left (a c - d\right )} x}\right ) + 2 \,{\left (a c - 2 \, d\right )} \arctan \left (\frac{\sqrt{-a^{2} x^{2} + 1} - 1}{a x}\right ) - \sqrt{-a^{2} x^{2} + 1} d}{d^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^(3/2)/(-a*x+1)^2/(d*x+c),x, algorithm="fricas")

[Out]

[-((a*c - d)*sqrt(-(a*c - d)/(a*c + d))*log((a^2*c*d*x + d^2 - (a^2*c^2 - d^2)*sqrt(-a^2*x^2 + 1) - (a*c*d + d
^2 + (a^3*c^2 + a^2*c*d)*x + sqrt(-a^2*x^2 + 1)*(a*c*d + d^2))*sqrt(-(a*c - d)/(a*c + d)))/(d*x + c)) - 2*(a*c
 - 2*d)*arctan((sqrt(-a^2*x^2 + 1) - 1)/(a*x)) + sqrt(-a^2*x^2 + 1)*d)/d^2, (2*(a*c - d)*sqrt((a*c - d)/(a*c +
 d))*arctan((d*x - sqrt(-a^2*x^2 + 1)*c + c)*sqrt((a*c - d)/(a*c + d))/((a*c - d)*x)) + 2*(a*c - 2*d)*arctan((
sqrt(-a^2*x^2 + 1) - 1)/(a*x)) - sqrt(-a^2*x^2 + 1)*d)/d^2]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (- \left (a x - 1\right ) \left (a x + 1\right )\right )^{\frac{3}{2}}}{\left (c + d x\right ) \left (a x - 1\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a**2*x**2+1)**(3/2)/(-a*x+1)**2/(d*x+c),x)

[Out]

Integral((-(a*x - 1)*(a*x + 1))**(3/2)/((c + d*x)*(a*x - 1)**2), x)

________________________________________________________________________________________

Giac [B]  time = 1.46747, size = 281, normalized size = 2.63 \begin{align*} -{\left (\frac{{\left (a x - 1\right )} \sqrt{-\frac{2}{a x - 1} - 1} \mathrm{sgn}\left (\frac{1}{a x - 1}\right ) \mathrm{sgn}\left (a\right )}{a d} - \frac{2 \,{\left (a c \mathrm{sgn}\left (\frac{1}{a x - 1}\right ) \mathrm{sgn}\left (a\right ) - 2 \, d \mathrm{sgn}\left (\frac{1}{a x - 1}\right ) \mathrm{sgn}\left (a\right )\right )} \arctan \left (\sqrt{-\frac{2}{a x - 1} - 1}\right )}{a d^{2}} + \frac{2 \,{\left (a^{2} c^{2} \mathrm{sgn}\left (\frac{1}{a x - 1}\right ) \mathrm{sgn}\left (a\right ) - 2 \, a c d \mathrm{sgn}\left (\frac{1}{a x - 1}\right ) \mathrm{sgn}\left (a\right ) + d^{2} \mathrm{sgn}\left (\frac{1}{a x - 1}\right ) \mathrm{sgn}\left (a\right )\right )} \arctan \left (\frac{a c \sqrt{-\frac{2}{a x - 1} - 1} + d \sqrt{-\frac{2}{a x - 1} - 1}}{\sqrt{a^{2} c^{2} - d^{2}}}\right )}{\sqrt{a^{2} c^{2} - d^{2}} a d^{2}}\right )}{\left | a \right |} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^(3/2)/(-a*x+1)^2/(d*x+c),x, algorithm="giac")

[Out]

-((a*x - 1)*sqrt(-2/(a*x - 1) - 1)*sgn(1/(a*x - 1))*sgn(a)/(a*d) - 2*(a*c*sgn(1/(a*x - 1))*sgn(a) - 2*d*sgn(1/
(a*x - 1))*sgn(a))*arctan(sqrt(-2/(a*x - 1) - 1))/(a*d^2) + 2*(a^2*c^2*sgn(1/(a*x - 1))*sgn(a) - 2*a*c*d*sgn(1
/(a*x - 1))*sgn(a) + d^2*sgn(1/(a*x - 1))*sgn(a))*arctan((a*c*sqrt(-2/(a*x - 1) - 1) + d*sqrt(-2/(a*x - 1) - 1
))/sqrt(a^2*c^2 - d^2))/(sqrt(a^2*c^2 - d^2)*a*d^2))*abs(a)